Morphologic Features and Molecular Classification of Endometrial Carcinoma

Robert Soslow, MD

G Getz et al. Nature 2013

Molecular classification of endometrial carcinomas

- <u>POLE</u>:
 - POLE exonuclease hotspot mutation
- <u>MSI-H</u>:
 - Defective MMR or MSI-H, no POLE mutation
- <u>NSMP/CN-L</u>:
 - No POLE mutation or defective MMR or aberrant p53
- <u>CN-H/serous-like</u>:
 - Aberrant p53 expression without POLE mutation or defective MMR

Advantages of molecular classification

- More precise prognosis
- More precise diagnosis
- Therapeutic prediction
- Lynch syndrome risk stratification

BEREK ET AL.

GANECOLOGY	WILEY	385
OBSTETRICS	HIGO TVILEY-	18

TABLE 1	2023 FIGO staging of cancer of the endometrium. ^{a,b}
	2020 Hos Maging of cancel of the endomentant

Stage	Description
Stage I	Confined to the uterine corpus and ovary ^c
IA	Disease limited to the endometrium OR non-aggressive histological type, i.e. low-grade endometroid, with invasion of less than half of myometrium with no or focal lymphovascular space involvement (LVSI) OR good prognosis disease
	IA1 Non-aggressive histological type limited to an endometrial polyp OR confined to the endometrium
	IA2 Non-aggressive histological types involving less than half of the myometrium with no or focal LVSI
	IA3 Low-grade endometrioid carcinomas limited to the uterus and ovary ^c
IB	Non-aggressive histological types with invasion of half or more of the myometrium, and with no or focal LVSI ^d
IC	Aggressive histological types ^e limited to a polyp or confined to the endometrium
Stage II	Invasion of cervical stroma without extrauterine extension OR with substantial LVSI OR aggressive histological types with myometrial invasion
IIA	Invasion of the cervical stroma of non-aggressive histological types
IIB	Substantial LVSI ^d of non-aggressive histological types
IIC	Aggressive histological types ^e with any myometrial involvement

Table 2. EC risk groups				
Risk group	Description ^a			
Low risk	Stage IA (G1-G2) with endometrioid type (dMMR ^b and NSMP) and no or focal LVSI Stage I/II <i>POLE</i> mut cancer; for stage III <i>POLE</i> mut cancers ^c			
Intermediate risk	Stage IA G3 with endometrioid type (dMMR and NSMP) and no or focal LVSI Stage IA non-endometrioid type (serous, clear-cell, undifferentiated carcinoma, carcinosarcoma, mixed) and/or p53-abn cancers without myometrial invasion and no or focal LVSI Stage IB (G1-G2) with endometrioid type (dMMR and NSMP) and no or focal LVSI Stage II G1 endometrioid type (dMMR and NSMP) and no or focal LVSI			
High-intermediate risk	Stage I endometrioid type (dMMR and NSMP) any grade and any depth of invasion with substantial LVSI Stage IB G3 with endometrioid type (dMMR and NSMP) regardless of LVSI Stage II G1 endometrioid type (dMMR and NSMP) with substantial LVSI Stage II G2-G3 endometrioid type (dMMR and NSMP)			
High risk	All stages and all histologies with p53-abn and myometrial invasion All stages with serous or undifferentiated carcinoma including carcinosarcoma with myometrial invasion All stage III and IVA with no residual tumour, regardless of histology and regardless of molecular subtype ^b			

ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up Ann Oncol. 2022

Harnessing genomic data for diagnosis, prognostication, therapeutic prediction (PROMISE algorithm)

Courtesy of Tjalling Bosse MD

Courtesy of Tjalling Bosse MD

Lancet Digit Health 2023 Feb;5(2):e71-e82

MMR deficiency

Aberrant p53 staining

Subclonal staining

J Pathol: 3, 336-345

Case presentation

- 65 year-old patient
- FIGO grade 3 endometrioid carcinoma
- FIGO stage IIC (2023) and FIGO stage IA (2009)

PMS2

Common features of MMR deficient (MMRd) endometrial carcinomas

Bosse T, *et al*. Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups. *Am J Surg Pathol* (2018)

FIGO G3 endometrioid

Grade and survivals in MMRd

PMID: 37268062

Summary	61 mutations, no copy number alterations, no structural variants detected. 3 alterations have OncoKB trainterpretations.	eat	ment	
MSI Status	MICROSATELLITE INSTABILITY-HIGH (MSI-H). See MSI note below. ^β		0	
Tumor Mutation Burden	The estimated tumor mutation burden (TMB) for this sample is 53.5 mutations per megabase (mt/Mb). T TMB assessed by MSK-IMPACT for all patients is 3.9 mt/Mb and for patients with Endometrial Cancer is as of the date this report was issued. ^{γ}	he 6.	media 1 mt/l	an Mb

Somatic alterations detected in this sample:

Gene	Туре	Alteration	Location	Additional Information		
Mutations						
BRCA2	Frameshift Deletion	S234Pfs*7 (c.700del)	exon 9	MAF: 42.3% 🕕 🎯 a		
PTCH1	Frameshift Deletion	V994* (c.2979del)	exon 18	MAF: 39.6% 🕕 🎯		
PTEN	Splicing Mutation	X85_splice (c.253+1G>A)	exon 4	MAF: 42.9% 🕘 🍥 🔥		
PTEN	Nonsense Mutation	Q298* (c.892C>T)	exon 8	MAF: 24.0% 🚯 🎯		
CTNNB1	Missense Mutation	T41A (c.121A>G)	exon 3	MAF: 45.2% 💿 🔥		
KDM5C	Missense Mutation	R159H (c.476G>A)	exon 4	MAF: 39.5% 🍥 🔥		
PIK3R1	Missense Mutation	K379E (c.1135A>G)	exon 10	MAF: 42.4% 💿 🔥		
RRAS2	Missense Mutation	Q72L (c.215A>T)	exon 3	MAF: 40.6% 💿 🔥		
SOX17	Missense Mutation	A96G (c.287C>G)	exon 1	MAF: 42.4% 🍥 🔥		
ARID1A	Frameshift Deletion	P109Afs*6 (c.325_329del)	exon 1	MAF: 37.7% 🍥		
AXIN2	Frameshift Deletion	G665Afs*24 (c.1994del)	exon 8	MAF: 38.9%		
CTCF	Frameshift Deletion	V100* (c.298_301del)	exon 3	MAF: 40.5% 💿		
EPHA3	Frameshift Deletion	M847Wfs*10 (c.2538del)	exon 15	MAF: 7.0%		
JAK1	Frameshift Deletion	K860Nfs*16 (c.2580del)	exon 19	MAF: 79.6% 💿		
KMT2D	Frameshift Deletion	L656Cfs*274 (c.1966del)	exon 10	MAF: 32.2%		
KMT2D	Frameshift Deletion	A2119Lfs*25 (c.6354del)	exon 31	MAF: 41.4% 💿		
MSH3	Frameshift Deletion	K383Rfs*32 (c.1148del)	exon 7	MAF: 40.3%		

- **Missense Mutation**
- Frame Shift Mutation
- Nonsense Mutation
- In Frame Deletion
- Splice Site Alteration Amplification Deletion Multiple Hits

DNA Mismatch Repair

Testing scheme

Consider somatic DNA MMR sequencing if clinical suspicion for LS is high

DNA mismatch repair (MMR) gene inactivation

Germline DNA MMR gene mutation

• *MSH6, MSH2, MLH1, PMS2*

 Germline EPCAM mutation leading to downregulation of MSH2 expression

Constitutive "epimutation"

Lynch Syndrome

Somatic promoter methylation (epigenetic silencing of *hMLH1*)

Somatic gene mutation

Not Lynch Syndrome

Clinical significance of mutation vs promoter methylation

Bosse T, et al. Am J Surg Pathol 2018

Kertwidjojo E, et al. Mod Pathol 2023

Common features of *POLE* ultramutated endometrial carcinomas

Hussein Y, Soslow R, *et al. Mod Pathol* 2015 Van Gool IC, *et al. Histopathology* 2018 Keyhanian K, *et al. Am J Surg Pathol* 2024

Summary	258 mutations, no copy number alterations, no structural variants detected. 5 alterations have OncoKB treatment interpretations.
MSI Status	MICROSATELLITE STABLE (MSS). See MSI note below. ^{β}
Tumor Mutation Burden	The estimated tumor mutation burden (TMB) for this sample is 226.5 mutations per megabase (mt/Mb). The median TMB assessed by MSK-IMPACT for all patients is 3.9 mt/Mb and for patients with Endometrial Cancer is 5.9 mt/Mb as of the date this report was issued. ^{γ}

Somatic alterations detected in this sample:						
Gene	Туре	Alteration	Location	Additional Information		
Mutations						
КІТ	Missense Mutation	T632A (c.1894A>G)	exon 13	MAF: 26.5% 🛛 😕	ω 🔘	
BRCA2	Nonsense Mutation	E510* (c.1528G>T)	exon 10	MAF: 27.6% 2B	0	
PIK3CA	Missense Mutation	T1025A (c.3073A>G)	exon 21	MAF: 32.4% 3B	🎯 🧄 α	
PIK3CA	Missense Mutation	R38C (c.112C>T)	exon 2	MAF: 3.2% 3B	🎯 🥠 α	
PIK3CA	Missense Mutation	R88Q (c.263G>A)	exon 2	MAF: 24.0% 3B	🎯 🧄 α	
POLE	Missense Mutation	P286R (c.857C>G)	exon 9	MAF: 27.9%	<u>()</u>	
PRKCI	Missense Mutation	R480C (c.1438C>T)	exon 15	MAF: 26.7%	<u>()</u>	
PTEN	Missense Mutation	Y68D (c.202T>G)	exon 3	MAF: 23.2%	<u>()</u>	
SMARCD1	Missense Mutation	R183Q (c.548G>A)	exon 5	MAF: 28.9%	<u>o</u>	
CBL	Missense Mutation	R420Q (c.1259G>A)	exon 9	MAF: 29.4%	0	
FLT3	Missense Mutation	S941L (c.2822C>T)	exon 23	MAF: 25.7%	0	
PTEN	Missense Mutation	F341V (c.1021T>G)	exon 8	MAF: 32.6%	0	
SMAD4	Missense Mutation	R496H (c.1487G>A)	exon 12	MAF: 26.5%	0	
SPOP	Missense Mutation	E50K (c.148G>A)	exon 3	MAF: 26.9%	0	
ARID1A	Nonsense Mutation	R1989* (c.5965C>T)	exon 20	MAF: 56.9%	0	
ARID1A	Nonsense Mutation	S607* (c.1820C>A)	exon 4	MAF: 24.6%	0	
ATM	Nonsense Mutation	R1730* (c.5188C>T)	exon 35	MAF: 28.6%	0	

Page 1 of 11

What makes POLE "POLE"?

Figure 2. POLE genomic alteration score (POLE-score). Diagnostic scoring system based on mutation type proportion and TMB of the five hotspot POLE mutations, as well as the variant recurrence.

J Pathol. 2020 Mar;250(3):323-335. PMID: 31829442

- **Missense Mutation**
- Frame Shift Mutation
- Nonsense Mutation
- In Frame Deletion
- Splice Site Alteration Amplification Deletion Multiple Hits

POLE assays

- Next generation multi-gene panel mutational testing for EDM hotspots
- QPOLE: POLE sequencing by multiplex genotyping qPCR

JCO Glob Oncol. 2023 May;9:e2200384.PMID: 37229628

SNaPshot Assay for POLE exonuclease domain mutations

Int J Gynecol Pathol. 2022 Nov 1;41(6):541-551. PMID: 34907997

POLE testing may not always be necessary

- Low-grade endometrioid carcinoma
- MMR-proficient
- *p53* wild-type
- pTla
- No lymphovascular space invasion

38% of hysterectomies

POLE testing strongly recommended

- 2023 FIGO IC and IIC, at least
 - "Aggressive histotype" limited to polyp/endometrium
 - "Aggressive histotype" with any myoinvasion

Grade and survivals in POLE

PMID: 37268062

Common features of copy number high (CN-H) endometrial carcinomas

- Splice site alteration
- Amplification
- Deletion
- Multiple hits

- Uterine clear cell carcinoma
- Grade 3
 - p53 IHC NA Aberrant

Wild-type

IIIB

IVA

Survival Status Alive Deceased

F

В

С

D

Ross DS, et al. Mod Pathol 2022
CN-H: Are they all equally bad?

• CN-H serous ~ endometrioid ~ clear cell

BUT

- CN-H carcinosarcoma
- CN-H carcinomas with divergent differentiation
 - Yolk sac-like
 - Choriocarcinoma
 - Trophoblastic

Features of copy number low (CN-L/NSMP) endometrial carcinomas

The only molecular group in which **grade** and **histotype** are clinically important

Aggressive CN-L subsets

- ER negative
- 1q gains
- PTEN wt
- Non-endometrioid
- Histologically high grade

Some more interesting endometrial carcinomas

Case presentation

- 70 year-old patient
- FIGO stage IIC (2023)

Howitt BE and Hammer PM, unpublished data

Summary	494 mutations, no copy number alterations, no structural variants detected. 3 alterations have OncoKB treatment interpretations.
MSI Status	MICROSATELLITE STABLE (MSS). See MSI note below. ^{β}
Tumor Mutation Burden	The estimated tumor mutation burden (TMB) for this sample is 407.0 mutations per megabase (mt/Mb). The median TMB assessed by MSK-IMPACT for all patients is 3.9 mt/Mb and for patients with Endometrial Cancer is 6.1 mt/Mb as of the date this report was issued. ^{γ} 1
Comments	A POLE/ POLD1 ultramutator phenotype (an abundance of alterations with a strand bias for C>A mutations at TpCpT context and T>G mutations at TpTpT context) is seen, likely as a result of POLE p.V411L.

Somatic alterations detected in this sample:

Gene	Туре	Alteration	Location	Additional Information	on
Mutations					
PIK3CA	Missense Mutation	D939G (c.2816A>G)	exon 20	MAF: 22.7% 3B	🎯 🧄
ERCC2	Missense Mutation	R631H (c.1892G>A)	exon 20	MAF: 24.0% 3B	0
BRCA1	Nonsense Mutation	E1214* (c.3640G>T)	exon 10	MAF: 25.1% 🕕 🚳	🎯 d
KRAS	Missense Mutation	G13D (c.38G>A)	exon 2	MAF: 5.1%	۸ 🥥
PTEN	Missense Mutation	R173H (c.518G>A)	exon 6	MAF: 22.0%	۵ 🔥
PTEN	Missense Mutation	D252G (c.755T>G)	exon 7	MAF: 24.5%	0
ARID1A	Nonsense Mutation	Q1579* (c.4735C>T)	exon 18	MAF: 24.3%	0
PTEN	Nonsense Mutation	R335* (c. 1003C>T)	exon 8	MAF: 27.1%	0
CASP8	Missense Mutation	R292Q (c.875G>A)	exon 7	MAF: 23.1%	(ه)
CDH1	Missense Mutation	D254N (c.760G>A)	exon 6	MAF: 23.6%	o 🔥
POLE	Missense Mutation	V411L (c.1231G>C)	exon 13	MAF: 26.9%	(ه)
PRKCI	Missense Mutation	R480C (c.1438C>T)	exon 15	MAF: 18.5%	(ه)
RAF1	Missense Mutation	S257L (c.770C>T)	exon 7	MAF: 5.1%	o 🔥
TP53	Missense Mutation	R181C (c.541C>T)	exon 5	MAF: 21.9%	o 🔥

POLE carcinosarcoma

Case presentation

- 55 year-old patient
- FIGO stage IIIC2 (2023) with para-aortic lymph node metastasis

Positive EMA (patchy) Negative PAX8 Negative CK7 Negative E-cad

Summary	29 mutations, 1 copy number alteration, no structural variants detected. 3 alterations have OncoKB treatment interpretations
MSI Status	MICROSATELLITE INSTABILITY-HIGH (MSI-H). $\$ See MSI note below. ^{β} $($
Tumor Mutation Burden	The estimated tumor mutation burden (TMB) for this sample is 23.9 mutations per megabase (mt/Mb). The median TMB assessed by MSK-IMPACT for all patients is 3.9 mt/Mb and for patients with Endometrial Cancer is 6.1 mt/Mb as of the date this report was issued.
Comments	Copy number profile is suggestive of broad copy number gain on chromosome regions 11q14.2-11q24, excluding KMT2A, and 19g.

		Somatic alterations detected in this sample:											
		Gene Type				Altera	ation		Locatio	on			
			Mutations										
		PIK3CA		Missense Mutation		E545K	(<i>c.1633G>A</i>)		exon 10	VAF: 45	5.9% 🕕	۸ ()	
		CHEK1	l	Frameshift Deletion		T226H	lfs*14 (c.676del)		exon 7	VAF: 4	1.6% <u>3</u> B	0	
		KRAS		Missense Mutation		G12V	(c.35G>T)		exon 2	VAF: 39	9.4%	o 🔥	
		ARID1	A	Frameshift Deletion		P1135	6Cfs*57 (c.3402_3403d	lel)	exon 12	VAF: 34	4.4%	0	
		ARID1A CIC		Nonsense Mutation		M1634* (c.4899del) R1515C (c.4543C>T)			exon 18	VAF: 32	2.8% ④	0	
				Missense Mutation					exon 20	VAF: 2.	5%	o 🔥	
		MAP3k	(1	Missense Mutation		S1330W (c.3989C>G)			exon 17	VAF: 38	3.6%	o 🔥	
		NFE2L	2	Missense Mutation		E82D	(c.246A>C)		exon 2	VAF: 33	3.6%	o 🔥	
		TP53		Missense Mutation		R273H	H (c.818G>A)		exon 8	VAF: 3	7.7%	۵ 🔥	
		FUBP1		Frameshift Deletion		S11Lfs	s*43 (c.30del)		exon 1	VAF: 3	1.6%	0	
		KMT2E	3	Frameshift Deletion		P2258	BLfs*3 (c.6773del)		exon 28	VAF: 19	9.1%	0	
		KMT2D)	Frameshift Deletion		G1235	5Vfs*95 (c.3704del)		exon 11	VAF: 32	2.8%	0	
		KMT2D)	Frameshift Deletion		P2354	Lfs*30 (c.7061del)		exon 31	VAF: 38	3.7%	0	
		LATS1		Frameshift Deletion		F1084	Lfs*44 (c.3252del)		exon 8	VAF: 4	1.0% 2.5%	0	
		LATS1		Frameshift Deletion		N271L	_fs*43 (c.811_812del)		exon 4	VAF: 42		0	
		PTPRT		Frameshift Deletion		P1094F	Rfs*6 (c.3281del)	е	exon 24	VAF: 3	.2%	0	
		TP53		Frameshift Deletion		V73Wfs	s*50 (c.216del)		exon 4	VAF: 34	.3%	0	
		SETD2		Splicing Mutation			_splice (c.5277+1G>A))	exon 10	VAF: 40	0.0%	0	
		FAT1		In-frame Deletion		N561de	el (c.1680_1682del)		exon 2	VAF: 36	6.9%		
		SCG5		In-frame Deletion		V196de	el (c.587_589del)		exon 6	VAF: 34	.0%		
								_					
Chr:Pos	Ref	Alt	Gene					Exon		TXID 🔞	CDNA	AA	
19:11097624	GC	G	SMARCA	4 🤊			0	exon5	NM	_001128849	c.810delC	p.M272C	
19:11098424	GC	G	SMARCA	4 ¹ 9			0	exon6	NM	_001128849	c.947delC	p.P316Lf	
		SMARC	A4	Missense Mutation		M527I	(c.1581G>A)		exon 9	VAF: 40	.9%		

VAF: 33.3%

exon 2

A884T (c.2650G>A)

Missense Mutation

ZFHX3

Positive EMA (patchy) Negative PAX8 Negative CK7 Negative E-cad

MMRd undifferentiated carcinoma, MMR and SMARCA4-deficient

SMARCA4-deficiency

Tessier-Cloutier B, et al. J Pathol Clin Res 2021

* Can co-exist in the same tumor/cell

Case presentation

- 58 year-old patient
- FIGO stage IVC (2023) with pulmonary metastasis

Mesonephric-like carcinoma

Chr:Pos	Ref	Alt	Gene						Exon	TxID 🔞	cDNA	AA	Variant Class	dbSNP	Method	MAF 🕜	VF_N 🕜	DP_T 📀	AD_T 🕜	VF_T (0.33728)
12:25398284	С	А	KRAS	୭	C	📥 🖿	59	9	exon2	NM_033360	c.35G>T	p.G12V	Missense_Mutation		MV		0.0 🚯	930	494	0.53118
3:41266113	С	т	CTNNB1	3	C	📥 🖿	59	0	exon3	NM_001904	c.110C>T	p.S37F	Missense_Mutation		MV		0.0 🚯	507	171	0.33728
12:57865657	С	А	GLI1	3		🖮 🖿		0	exon12	NM_005269	c.3134C>A	p.T1045N	Missense_Mutation		MV		0.0 🚯	1547	469	0.30317

da Silva, E.M., et al. Mod Pathol 2021

Clinico-pathological summary

• POLE:

- Very low risk regardless of histotype and grade
- MSI-H:
 - Low risk with MMR mutation
 - Intermediate risk across histotypes and grades with *MLH1* promoter methylation
 - Very high risk with SMARCA4/ARID1B mutation
- NSMP: risk is associated with histotype, grade and molecular subtype
 - Low risk if low-grade endometrioid, low stage and ER+
 - High risk for high-grade endometrioid and clear cell
 - Very high risk for mesonephric-like, carcinosarcoma and with SMARCA4/ARID1B mutation
- CN-H
 - High risk for serous, clear cell and endometrioid
 - Very high risk for carcinosarcoma, divergent differentiation and with *myc* amplification

Take home messages

- PROMISE algorithm is essential
- POLE testing is strongly recommended for "aggressive histotypes" confined to uterus
- Conventional therapeutic targets
 - MSI-H (checkpoint inhibitors)
 - CN-H Her2+ (Her2 inhibitors)
- Unconventional therapeutic targets
 - *RAS* pathway inhibitors
 - AKT inhibitors
 - EZH2 inhibitors (SMARCA4 in peds)....

2020 Harlan J. Spjut Award Recipient

2020 Harlan J. Spjut Award Recipient

Anais Malpica, MD My dear friend

Come and visit me on Lake Erie

PHOTO: SDOMINICK/GETTY IMAGES
Thank you for your interest

